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Abstract

A distributed associative neural model of episodic memory for spatio-
temporal patterns is presented. The model exhibits faster-than-linear
capacity scaling, under single-trial learning, for both uncorrelated and
correlated patterns. The correlated pattern sets used in simulations re-
ported herein are formally, sets of complez state sequences (CSSs)—i.e.
sequences in which states can recur multiple times. Efficient representa-
tion of large sets of CSSs is central to speech and language processing.
The English lexicon, for example, is formally representable as a set of
many thousands of CSSs over an alphabet of about 50 phonemes. The
model chooses internal representations (IRs) for each state in a highly
random fashion. This implies maximal dispersion—i.e. maximal av-
erage Hamming distance—over the set of IRs chosen during learning.
Maximal dispersion yields maximal episodic availability of the traces of
the individual exemplars.

1 INTRODUCTION

This paper describes a distributed neural network model, TEMECOR!, of episodic mem-
ory for spatio-temporal patterns. Episodic or autobiographical memory (Tulving, 1972)
is memory for specific events that one has experienced. They are detail-rich memories
that can generally last a lifetime even though they are derived from events that occur
only once (i.e. single-trial learning). In addition, assuming episodic memories are en-

*This is a substantially revised and extended version of a paper submitted to the World
Congress on Neural Networks, 1995, Washington, DC.

! Rinkus (1993) contains a Preliminary description of the basic principles of TEMECOR
(Temporal Episodic MEmory using COmbinatorial Representations).



coded in terms of high-level features, the set of one’s episodic memories may contain
substantial featural overlap (non-orthogonality).

A special case of the class of spatio-temporal patterns is that which Guyon, Personnaz &
Dreyfus (1988) have referred to as complez state sequences (CSSs). A CSS is a sequence in
which states can recur multiple times—e.g. [A B B C A D B]. The ability to efficiently
represent and process CSSs lies at the heart of speech and language modelling. The
spoken lezicon of English, for example, can be formally represented as a set of on the
order of 100,000 CSSs (word forms)? over a set (alphabet) of about 50 phonemes (states).
Assuming the average number of phonemes per word is five, this means the each phoneme
occurs, on average, 10,000 times over the entire lexicon.

We show in section 4 that TEMECOR’s capacity increases faster-than-linearly in the
number of cells in the model. This is achieved with single presentations of each pattern
and for both uncorrelated patterns and correlated patterns (CSS case).

In order to successfully represent sets of CSSs like:

Seq. 1: [ABB C A D B]
Seq. 22 [BCBBD A A
Seq. 3: [AC A BBE]

a model must find different (although possibly overlapped) internal representations (IRs),
not only for all instances of a given state, X, within each individual sequence, but for
all instances of X across all sequences in the set; otherwise, during recall, the model will
not be able to reliably transition to the correct states following the various instances of
state X.

Fig. 1 depicts the basic format of TEMECOR’s internal representations of states. The
cell groups (a-€) correspond to features. Any cell in the group can be used, in a particular
instance, to represent the feature. A state, X, is defined as a set of co-active features. An
internal representation of X, IR(X), is a choice of a particular combination of cells—one
cell in each group corresponding to one of X’s features. Thus, fig. 1 depicts one particular
IR for the state consisting of features, {a,b,c}. The total number of unique IRs for the
state is (43 = 64). It is the exponentially large IR-space for any particular state that
underlies TEMECOR’s great capacity for storing CSSs.
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Figure 1: Depiction of the basic representation format used in TEMECOR. The pattern
(i.e. state) has three features, {a,b,c}. Assuming one cell is chosen to represent the
corresponding feature in each group, there are 43 = 64—i.e. an exponentially large
number of—unique representations of that state.

On each timeslice, specific cells, within each active featural group (see fig. 1), are chosen
at random. This guarantees that the IRs the model chooses are uniformly distributed in
IR-space. While the exact same IR could be chosen for a given state on more than one
occasion, this probability is exceedingly small. Specifically,

p(IR(X1) = IR(Xs)) = K%,

2This estimate of 100,000 refers to word forms (e.g. “jump”, “jumped”, “jumper”, etc. are
different forms of the same root word) but since they correspond to distinguishable acoustic
patterns (with different meanings), they must all be counted as separate entries.



where X7 and X5 denote different instances of state X, S is the number of active features
in X, and K is the number of cells per cell group. Furthermore, should such a coincidence
occur, it is only the two state sequences in which these two IRs occur that will be affected.

2 RELATED WORK

There have been several recent proposals of recurrent models based on back-propagation
(Rumelhart, Hinton & Williams, 1986) for processing spatio-temporal patterns—in par-
ticular, sets of CSSs generated by a finite-state automaton (FSA) [the SRN (Elman,
1990), the recurrent model of Jordan (1986) which we will call the Jordan Recurrent
Network (JRN), and the Real-Time Recurrent Learning (RTRL) model of Williams &
Zipser (1989)]. However, these models have been designed to learn the higher-order
statistical regularities (correlational structure) of the set of CSSs. They have not been
shown to be capable of episodically recalling the individual exemplars.

The SRN, JRN and RTRL all use continuous-valued cells, and thus have very large IR-
spaces. A hidden layer of 15 cells having four resolvable levels of activity has 4'® > 1
billion states (Cleeremans, 1993). The problem, however, is that back-propagation acts
to increase the similarity of [or, “homogenize”; Cleeremans (1993)] the chosen IRs. This
compression of the actually-used regions of IR-space—an effect clearly revealed by hierar-
chical cluster analysis (Smith & Zipser, 1989; Elman, 1990; Cleeremans, 1993)—underlies
these models’ powers of generalization and categorization but tends to obliterate exactly
the temporal context (state history) information needed for an episodic degree of reten-
tion. Furthermore, as Cleeremans points out, this effect is only made worse by further
learning.

3 DESCRIPTION OF TEMECOR

TEMECOR has two layers as shown in fig. 2. Layer 1 (L1) contains M binary feature
detectors. Layer 2 (L2) contains M winner-take-all competitive modules (CMs) which
are in one-to-one correspondence with the L1 cells. Each CM has K cells. Whenever
a particular L1 cell fires, exactly one of the L2 cells in the corresponding CM is chosen
winner. Each L2 cell has an excitatory modifiable {0,1}-valued synapse onto every other
L2 cell (except for those in its own CM). It is this set of horizontal connections in which
the chains encoding the temporal aspect of the inputs are embedded. A simple Hebbian
learning rule is used. Every L2 cell active at timeslice ¢ increases its weight onto all
L2 cells active at ¢t 4+ 1 unless the weight has already been increased. Each L2 cell has
an unmodifiable synapse onto its corresponding L1 cell. The purpose of these top-down
(TD) or reverse connections is to allow the appropriate L1 pattern to be reinstated when
an L2 pattern reads out during recall.

Although TEMECOR, does not require it, we assume for simplicity of exposition that all
states have the same number S of active features, where S < M. The terms “episode,”
“spatio-temporal feature pattern” and “state sequence” are generally interchangeable in
this paper. A typical episode, ®, consisting of three timeslices can be expressed as:

®i: {a, b, c} A:{a, b, c}
<I>%: {d, e, f} or, X: {d, e, f}
5 {g, b, i} B: {g, h, i}

where each ®¢ denotes a particular timeslice. Lowercase letters denote features. As
shown in the righthand representation, unindexed uppercase letters are sometimes used
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Figure 2. TEMECOR has two layers. Some of the horizontal connections emanating
from one L2 cell are depicted with dashed lines ending in either large (weight = 1) or
small (weight = 0) black synapses. Only a few sample reverse (i.e. top-down) projections
are shown.

to represent states.

Fig. 3a shows a particular L2 representation® (L2-code) for ®i: L2 cells are assumed to
be chosen at random (in the learning phase) within active CMs (i.e. CMs corresponding
to active L1 cells), thus ensuring, statistically, a highly dispersed—in terms of Hamming
distance—set of 1.2 codes. L2 codes are denoted with the Greek letter, A. The L2 code,
A? corresponding to ® can be written as:

All {al,bg,cl}
AY: {ds, es, f3}
A% {ga, hy, i3}

where the notation, aj, indicates cell 1 in CM,.

Fig. 3a also shows the learning that would occur due to presentation of ®*. A synapse,
Wgy 1s Increased to asymptote (i.e. 1) after a single correlation in which cell y is active
immediately after cell z. Cell activation levels are {0,1}-valued.

TEMECOR does not require that the set of spatial patterns (timeslices) be orthogonal.
Rather, as the challenge we’ve taken up is to represent sets of CSSs, whole states can
recur exactly without presenting a problem to the model. To see this, suppose a second
episode, ® | defined as:

®): {a, b, k} C: {a, b, k}
@y {d, e, f} or, X: {d, e, f}
®%: {g, h, n} D: {g, h, n}

is presented to the model. Fig. 3b shows one possible L2 trace that could be chosen for
®’. Again, 1.2 winners are chosen at random within active CMs. Both episodes have the

same middle state ( i.e. ®) = <I>J2) as well as a great deal of featural overlap on the other
two timeslices. Nevertheless, the L2-code of that middle state is very different in the two

instances. In fact, ‘AZQ N AJQ‘ = 1. This suggests we can prevent interference between the

3The L2 codes correspond to the IRs discussed in the introduction.



two memory traces by requiring that a cell have at least © active, large (i.e. a weight of
1) synapses in order to fire. The parameter, ©, is called the recall threshold.*

Figure 3: Active cells are shaded. The three rows correspond to three consecutive time
steps. a) a particular L2 code, A*, that might be chosen at random for ®*, as well as the
corresponding learning. b) an L2 code, A?, for ®7.

Fig. 4 shows that ®° is recalled perfectly if S > © > 2. Cells e3 and f; receive input
only from by and so do not meet © and remain inactive. Cells, dg, ey and f3, receive
three large inputs and correctly become active on the second timeslice of this recall trial.
Similarly, none of gs, hs and nj, become active at ¢ = 3 because none of them meets ©.
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Figure 4: Recall of ® in the case of 2 < © < 3. If© = 1, then ny would become active
att=3. If© > 3, then no recall at all 1s possible.

The recall example of fig. 4 assumes a precise L2 code—A} = {ay,bs, c1}—is provided
as a recall prompt. In reality, prompts are necessarily L1 codes; afterall, L1 is the input
layer. Using L2-codes rather than L1-codes as recall prompts is justifiable here because
it has minor bearing on capacity which is the focus of this paper. However, a more
complete version of the model, which provides a mechanism whereby episode-initial L1
patterns cause the correct episode-initial L2 codes to become active, is developed in
Rinkus (1995, Ph.D. thesis, in prep.).

“The basic idea of this type of combinatorial memory is eloquently described, for the spatial
pattern domain, in Willshaw, Buneman, & Longuet-Higgins (1969). The models of Marr (1969),

Lynch (1986), and Miller (1991) are also instances of spatial combinatorial memories.



Table 1: Results of stmulations using uncorrelated patterns. All Stmulations had © = 19,
S =20 and T = 10. Abbrevs.. F' = ave. instances of each feature, across entire set of
episodes; K = CM size; L = total L2 cells; V' = ave. number of times each L2 cell is
used; var(V') = variance of V; Wy, . = total number of increased weights; Rse; = recall
accuracy over the whole set of episodes; and H = percent of horizontal weights increased.

E E/L F K| L v var(V) Wine Reee | H
129.3 | 0.162 | 258.7 8 800 32.33 42.78 327465.7 | 97.8 | 51.7
290.3 | 0.242 | 580.7 | 12 | 1200 | 48.39 58.61 736201.3 96.6 | 51.6
517.0 | 0.323 | 1034.0 | 16 | 1600 | 64.62 78.58 1309367.0 | 97.2 | 51.7
793.0 | 0.397 | 1586.0 | 20 | 2000 79.3 72.69 2020240.0 | 97.2 | 51.0
1141.7 | 0.476 | 2283.3 | 24 | 2400 | 95.14 86.94 2908397.0 | 97.1 | 51.0
1544.7 | 0.552 | 3089.3 | 28 | 2800 | 110.33 98.93 3942919.0 | 97.2 | 50.8
2002.3 | 0.626 | 4004.7 | 32 | 3200 | 125.15 | 115.21 | 5122921.3 | 97.1 | 50.5
2506.0 | 0.696 | 5012.0 | 36 | 3600 | 139.22 | 177.57 | 6433038.0 | 97.1 | 50.1
3084.0 | 0.771 | 6168.0 | 40 | 4000 | 154.2 193.86 | 7925805.0 | 97.7 | 50.0

4 SIMULATION RESULTS

Table 4 gives the maximal capacity (and other statistics) for networks of increasing size,
in the case of uncorrelated patterns, and where all episodes had 7" = 10 timeslices and
each timeslice had S = 20 (out of M = 100) active features, chosen at random. The
product, T x S, will be referred to as the spatio-temporal complezity (STC) of an episode.

Parameters constant for all simulations reported in this paper are: M = 100, .S = 20, and
the criterion recall accuracy, R, = 97.0%. ©, is set to S—1 = 19 for all these simulations.
Because the degree of overlap over the set of L2 codes increases as additional episodes are
presented, maximal capacity is achieved by setting © as high as possible (but necessarily

less than S).

Table 4 was generated as follows. For each K, the maximal number, ¥, of episodes
which could be stored to criterion accuracy was determined.® Recall accuracy, R(e), for
a given episode e, is defined as:

_ Cle) = D(e)
— Cle)+ I(e)
where C'(e) is the number of L2 cells that are correctly active during recall of e, D(e)
is the number of deleted L2 cells, and I(e) is the number of intruding L2 cells. Recall

accuracy for a whole set of episodes, R;.¢, is just the average of the R values. All episodes
were presented only once.

R(e)

Table 4 supports the claim that the number of episodes that can be stored to criterion
recall accuracy increases faster-than-linearly (at least over the range of network sizes
analyzed) in network size. This is also seen in the curves of fig. 5. The second lowest
curve (labelled “UNC, STC=200") is derived from table 4. Space limitations prevent
inclusion of the tables corresponding to the other seven curves. The curve labelled,
“UNC, STC=80", corresponds to simulations in which 7" =4 and S = 20—i.e. a total
of 80 featural instances per episode; the simulations giving rise to the curve, “UNC,

STC=120”, had T'= 6 and S = 20; etc.
The solid curves of fig. 5 show that a slightly slower, although still faster-than-linear,

5Each line (i.e. data point) of all tables represents the average of three simulations with the
corresponding parameter set.



10000 T T T T T T é
UNC, STC=80 o ’
COR, STC=80 ——

8000 [ ync, STC=120 -+ .
COR, STC=120 ———
UNC, STC=160 -o- o

6000 | COR, STC=160 —=— r i
UNC, STC=200 -x- .
COR, STC=200 —>— E

4000 |+ g i

2000 i

0 — 1 1 1 1

500 1000 1500 2000 2500 3000 3500 4000

Figure 5: The four dotted curves correspond to stmulations in which uncorrelated episodes
of varying STCs—80,120,160 and 200—were used. The solid curves correspond to sim-
ulations involving correlated episodes.

relationship also holds for the case of correlated patterns. The episodes used in the
CSS simulations were constructed as follows. First, a set (alphabet) of /' = 100 unique
states, each consisting of 20 active features (chosen randomly from the 100 possible
features), was built. The timeslices comprising the episodes were then randomly chosen
(with replacement) from this alphabet of 100 states. In the “L=4000" data point of the
“COR, STC=80" curve, for example, the average number of occurrences of each state is

about 340.

5 CONCLUSION

The simulation results, for both uncorrelated and correlated patterns, show that
TEMECOR’s capacity scales faster-than-linearly with problem size, while requiring only
single-trial learning. This finding is especially encouraging in the CSS case since linguistic
information (e.g. the lexicon) can be represented as sets of CSSs over a finite alphabet.
In addition, since the horizontal weights do not decrease, stability depends only on the
degree of weight saturation, not on the frequency or order of occurrence of patterns. This
is a necessary property of an episodic memory which is, almost by definition, a repository
for statistically rare events. In contrast, models based on back-propagation have been
shown to be subject to massive (“catastrophic”) forgetting (McCloskey & Cohen, 1989)
in which newly encountered patterns obliterate old and infrequently accessed memory
traces.

Space does not permit a more detailed discussion of TEMECOR’s other properties and



capabilities. However, it retains its faster-than-linear capacity scaling across wide regions
of parameter space (e.g. various degrees of horizontal connectivity, varying S, etc.).
Furthermore, generalization and categorization properties can be added by generalizing
the model so that the choice of the current IR (i.e. L2 code) depends partly on the
previous L2 code, partly on the current input (i.e. L1 code), and partly on noise. Such a
generalized version of the model, in which the relative mixture of these three influences
varies during processing as a function of the difference between expected and actual
input, is developed in Rinkus (1995).
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