
On every time step and at every level:
Every cell computes:

1. the degree of match, χ, between its bottom-up (U), top-
down (D), and horizontal (H) input vectors.

2. The overall degree of match, JG, for an entire level, J, is 
computed.

• JG is the average of the maximal χ values in all of J’s 
CMs.

3. Within each CM, the vector of χ values is transformed into 
a probability distribution (ρ values).

• The shape of the ρ distribution depends on JG.

4. Within each CM, a winner is chosen on the basis of the ρ
distribution.

• Every cell in every CM 
receives input from all:

• Previously active cells 
in neighboring levels.

• Previously active cells 
in its own level.
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Abstract

We describe a hierarchical connectionist model of cortex that 

performs recognition and recall of spatiotemporal patterns 

(sequences). Our goal was to find an architecture invariant to 

presentation speed. A key feature of our model is that persistence, 

i.e., the length of time a unit (neuron) tends to remain active when it 

becomes active, increases from the bottom hierarchical level (i.e., 

primary sensory cortices) to higher levels (i.e., more rostral 

cortices). A growing body of evidence supports long persistence 

times for rostral neurons (Fuster & Alexander, 1971) and, more 

generally, a caudo-rostral persistence gradient (Uusitalo et al., 

1996). In the simulations reported here, persistence doubles from 

one level to the next (the levels are bidirectionally connected). 

Thus, a set of cells that becomes active at level LJ (an LJ code) will 

be active during, and therefore form top-down (TD) and bottom-up 

(BU) associations with, two successive LJ-1 codes. The model’s 

internal levels are organized into winner-take-all competitive 

modules (CMs). We provide simulation results demonstrating that 

the model can learn multiple complex sequences (sequences in 

which the same state can recur multiple times) and then recognize 

novel sequences that are non-uniformly time-warped and noisy 

versions of the previously experienced sequences.  The model’s 

robustness to time-warping results from the fact that LJ+1 codes 

are active during several successive LJ-1 codes. The occurrence 

of any of those LJ-1 codes while LJ+1 is active will result in 

recognition. 

T = 0 T = 1 T = 4

• Hierarchical

• Sparse distributed representations

• Winner-take-all (WTA) 
competitive modules (CMs)

• Binary cell activity levels

• All binary weights except the BU 
weights from L1 to L2.

• Cells at higher levels have longer 
persistences

• When they become active, they tend 
to stay active for a longer period.

• Unsupervised Hebbian learning

Uusitalo et al. (1996) Persistence Data

• Magnetic source imaging (MSI) 

of evoked responses to brief 

(70 msec) checkerboard 

stimulus

• They clustered cortical areas 

into two groups based on 

lifetimes

• Occipital:  0.1—0.6 sec.

• Temporal, Parietal, & 

Frontal:  7—30 sec.
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Lj+1 • Here the green circle represents the 

maximal normalized TD input.

• The orange ‘crown’ gives a visual 

depiction of the relative TD 

likelihoods over the cells of the CM.

Λ: The normalized 
TD likelihood 

vector

Ψ: The normalized 
BU likelihood 

vector
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• The χ-values near 0 map to ξ-values at or near 1.0.

• The χ-value at 1.0 maps to a ξ-value of 4001.0

1
1

4000
)(

)5.0)((30
+

+
=

−− it
te

i
χ

ξ

0.0

1000.0

2000.0

3000.0

4000.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

χ

0.5

0.0

1.0

χ

ReferencesReferencesReferencesReferences

1. Uusitalo, Samuel J. Williamson, Mika T. Sepp “Dynamical 

organization of the human visual system revealed by lifetimes of

activation traces” (1996) Neuroscience Letters 213 (1996) 149-152.

2. Lisman, J. & Idiart, M.A.P. (1995) “Storage of 7 ± 2 short-term 

memories in oscillatory subcycles” Science 267:1512-1515.

3. Fuster, J. M. & Alexander, G. E. “Neuron activity related to short-

term memory” Science Wash. DC 173: 652-654, 1971.

Lj-1

Lj

Lj+1

Bottom-up
influence

Top-down
influence

Horizontal
Influence
(red arrows)

Speed-up or

Slow-down

factors

L1

L2

L3

L4

L5

92.0

92.9

92.8

92.7

90.5

Recall Acc. (%)

Experiment 2: Complex Experiment 2: Complex Experiment 2: Complex Experiment 2: Complex 

Sequence Data SetSequence Data SetSequence Data SetSequence Data Set

L

L1

L2

L3

L4

L5

90.3

100.0

100.0

100.0

100.0

Recall Acc. (%)

Time-Invariant Recognition of Spatiotemporal Patterns in a Hierarchical Cortical Model with a Caudal-Rostral Persistence Gradient

L1

L2

L3

L4

L5

99.7

100.0

100.0

100.0

100.0

Recall Acc. (%)

)(max)( iz
tCMit

z

χπ
∈

=

Q

z
G

Q

z t

t

J ∑ == 1
)(π• JG is the overall match,at

level J, between the TD, H 

and BU vectors.

• G is implicitly a spatiotemporal 

similarity metric because it includes 

the H influence, which encodes 

information about the history of the 

sequence leading up to the current 

moment.

• Specifically, it is a measure of the 

distance between the current input 

sequence and the closest-matching 

previously-experienced sequence.

• π(z) is the maximal χ-

value in CM z.
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• All χ-values map to ξ-values at or near 1.0.
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PromptPromptPromptPrompt: When testing recall, we prompt with the first 

time slice of an sequence.

Comparison between 

Original and Recalled 

Trace for Sequence 0

To visually verify that the traces are the same, compare 

the original and recalled codes at a given level and time 

slice (vertical column). An example comparison is shown 

(blue boxes and connecting line) at time slice 14.

• There is a single 

error at L2 on the 

first sub-slice when 

item E presents 

during recognition.

• It is rectified on the 

following sub-slice.

E (t = 7)

E (t = 12)

Original

Recognition

Comparison between 

the original and 

recognition traces on 

the final sequence item, 

E, which occurs as the 

8th time slice in the 

learning (original) trial, 

and due to the time-

warping, as the 12th

time slice during the 

recognition trial.

Experiment 3: Complex Sequence Data SetExperiment 3: Complex Sequence Data SetExperiment 3: Complex Sequence Data SetExperiment 3: Complex Sequence Data Set

Experiment 1: NonExperiment 1: NonExperiment 1: NonExperiment 1: Non----Complex Sequence Data SetComplex Sequence Data SetComplex Sequence Data SetComplex Sequence Data Set

Simulation MethodsSimulation MethodsSimulation MethodsSimulation Methods
LearningLearningLearningLearning: 

In all experiments, each sequence is 

presented only once.

RecallRecallRecallRecall: 

To test recall, we prompt with the first item of 

the sequence. For recall, performance is 

measured by how similar the recall and 

original traces are, averaged across all levels.

RecognitionRecognitionRecognitionRecognition: 

To test recognition, we construct a novel 

sequence, with time-warping and/or per-slice 

perturbation, from the original and present it 

to the model. For recognition, in general, 

there will not be a 1-to-1 correspondence 

between the items of the original and recalled 

sequences (due to time-warping). Therefore 

performance is measured as the similarity 

between the recognition and original traces 

but only for the final item of the two 

sequences.
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3: Results
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One of Ten 

Original Episodes

• A time-warped and 

spatially perturbed (one 

feature per slice changed 

at random) variant of the 

original episode below.

• Nearly 100% recognition 

accuracy (data not shown)

• Another time-warped 

variant of the original 

episode above. No 

spatial perturbation.

• Nearly 100% 

recognition accuracy 

(data not shown).

Total Weights: 934,106

Total Weights: 240,572

Total Weights: 34,917
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Future WorkFuture WorkFuture WorkFuture Work

1. The increasing persistence gradient is crucial to the model’s ability to 

handle time-invariance. However, the model needs modification in order to 

explain how many sequences that start with the same item or prefix can be 

mapped into different higher-level codes. We will explore the addition of a 

working memory mechanism, e.g., the Theta/gamma-based model of 

Lisman & Idiart (1995) to solve this problem.
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• Activity marches up 
through the levels 
once the input is 
presented

2: Model Operation
Input ParametersInput ParametersInput ParametersInput Parameters

• One complex sequence

• 8 items (time slices)

• 6 unique states

• Non-uniform warping

Input ParametersInput ParametersInput ParametersInput Parameters

• Ten non-complex sequence

• 16 items (time slices) each

• 100 input features

• 10/100 features chosen at random 

on each slice.

• Two different schedules of non-

uniform warping

Input ParametersInput ParametersInput ParametersInput Parameters

• Six complex sequence

• 8 items (time slices) each

• 100 input features

• Alphabet of 15 states

• 10% features active on each slice

• 6 unique states

• Non-uniform warping

1: Model Overview

4: Summary
• We’ve provided simulation results of a hierarchical neural network that performs single trial 

learning of complex sequences and can then recall them when prompted and recognize non-

uniformly time-warped and noisy versions of them.

• The two major principles underlying the model are:

• Its use of a sparse distributed representations. In general, this affords high storage 

capacity in terms of bits/synapse, although these simulations do not demonstrate that. 

Secondly, sparse distributed representations, i.e., combinatorial representations, allow 

an additional representational dimension in that the similarity of two different memory 

traces can be encoded in the degree of overlap (intersection) between the two traces.

• Graded persistence such that cells that are late in the ‘cortical’ hierarchy remain on 

longer than cells that are early. This allows higher-level codes to become associated with 

multiple successive underlying codes and leads to robust time-invariant recognition.

Normalized Likelihood Vector

G near 1.0 leads 

to an expansive 

nonlinearity

G near 0.0 leads to an 

compressive  nonlinearity

χχχχ values get turned 

into probability (of 

being chosen) values


