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Many prior neural models of decision-making use a global arousal measure, perhaps 
reflecting norepinephrine levels, to titrate randomness into the choice process.  The value 
(expected reward), V, of each possible choice (hypothesis) is computed.  Then the 
V distribution is converted to a probability distribution, ρ, as a function of arousal level; i.e., 

higher arousal → more randomness added → less likely that the highest-V choice wins;   

lower arousal (i.e., more focused attention) → less randomness added → more likely that the 
highest-V choice wins.  In the main, these prior models have used localist representations 
(codes) of choice; i.e., one coding unit per choice, whether that unit be a single cell or a 
distinct population of cells.  Our proposed model departs from earlier work in two ways.  
1) Instead of arousal/attention, it uses a global measure of familiarity, G, i.e., the degree of 
match between the expected and actual inputs, to titrate randomness.  2) It uses a sparse 
distributed code, i.e., each choice’s code is a set of Q cells and any given cell participates in 
many codes.  Instead of expected reward, we define a cell’s V as the degree of match 
between its receptive field and its current input pattern, i.e., a local degree of evidence. 

The figure’s top row shows hypothetical V values over a representational field with 24 cells 
grouped into six WTA clusters.  It contrasts two cases: unfamiliarity (all cells have weak local 
evidence, V≈0) and perfectly familiarity (each cluster has a cell with V=1).  We call the set 
of Q=6 cells with the maximum V, V̂ , in the cluster (black bars), the most favored code, or 
V̂ code.  Note, the V̂ code is the same in both cases.  But, the average, G, of the V̂ code 
differs greatly, ~0.1 for unfamiliar case, 1 for familiar.  Normatively, when unfamiliarity is 
detected, a new code having little overlap with any previously assigned code should be 
assigned.  Our model achieves this by making the V-to-ρ map be a constant function (green 
line).  Choosing six winners from the uniform distributions (bottom left) yields the minimal expected 

overlap between the final code (bottom row) and the V̂ code (code separation).  Conversely, when 
perfect familiarity is detected (G=1), the model should reactivate the code that represented 
the current (familiar) condition in the past, i.e., the V̂ code.  Thus, the V-to-ρ map becomes 
highly expansive (green sigmoid), yielding the highly peaked distributions (lower right).  This 
maximizes the probability that the V̂ cell in each cluster wins, and thus, that the V̂ code, as 
a whole, gets reactivated (code completion).  More generally, morphing the V-to-ρ map 
smoothly based on G confers the property that similar inputs map to similar codes.   
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